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An Analytical Solution for a Class of
Oscillators, and Its Application to Filter Tuning

Shanthi Pavan,Member, IEEE,and Yannis P. Tsividis,Fellow, IEEE

Abstract—We present a completely analytical solution to a
filter–comparator oscillator system, and verify it by macromodel
simulations and experiment. We discuss the applications of this
kind of oscillator in a vector–locked loop system for continuous
time filter tuning. We also apply our solution to the operation of
a resonant switched mode inverter.

Index Terms—Automatic tuning, filter tuning, oscillator, VCO.

I. INTRODUCTION

SINE-WAVE oscillators (Fig. 1) contain an active element
with sufficient power gain at the oscillation frequency,

a frequency selective network, and an amplitude stabilizing
mechanism. They are capable of producing a near-sinusoidal
signal with good phase noise and high spectral purity.

In a sine-wave oscillator, positive feedback is used around a
frequency selective circuit to drive the poles of the correspond-
ing closed-loop linear system into the right-half s-plane. In the
case to be considered in this paper, the “gain” of the amplifier
is set to , as shown in Fig. 2. Such systems are encountered
in nonlinear control systems literature [1]–[3] and have been
used by designers [4], [5] in filter tuning schemes, where one
approach is to construct an oscillator with filter building blocks
(integrators), for the purposes of monitoring and tuning filter
characteristics. It is important in such schemes to make sure
that the filter undergoes no internal limiting phenomena, so that
its response can be predicted by linear system theory. This is in
contrast to other oscillator methods, in which limiting within
the filter can modify the frequency of oscillation [6] of the
closed-loop system, which then does not match and track the
locations of the filter poles with variations in temperature and
other environmental factors.

The system of Fig. 2 has been studied earlier in the context
of integrated oscillators using digital blocks. For an analysis
of the system using nonlinear differential equations, the reader
is referred to [7], where the comparator is realized by using
a cascade of two inverters, and the bandpass filter is an
LCR series circuit. The analysis in the above work is done
by approximating the nonlinear transfer characteristic of the
comparator by a suitable transcendental function, and solving
the nonlinear differential equation obtained using well known
techniques.
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Fig. 1. Block diagram of an oscillator.

Fig. 2. The filter comparator oscillator.

The filter–comparator system could also be analyzed by
using the describing function approach [2], where the nonlinear
block is replaced by an “equivalent” linear block. A first-order
describing function analysis, however, predicts that the system
will oscillate at the filter pole frequency, regardless of the filter
quality factor, which we will see is incorrect. A higher order
describing function analysis gets close to the exact result. An
exact method for systems consisting of linear networks and
relays has been proposed by Tsypkin and is described in detail
in [2]. This method, however, requires the evaluation of an
infinite series using contour integrals.

The disadvantage of all the above methods for this particular
system is their complexity. They do not offer much insight into
system operation, and the solutions are in terms of Fourier
coefficients for the steady-state response. In contrast, the
solution we present in this paper is straightforward, provides
intuition, and gives information about all the quantities of
interest (amplitude, frequency, steady state pulse shape, build-
up transient)exactly.

In Section II, we present our method of analysis, using the
transient response, and examine the issue of Total Harmonic
Distortion (THD) of the output waveform in considerable
detail. Upper bounds for THD are derived for some related
topologies. Section III applies the results of our analysis in the
automatic tuning of continuous time filters. A new vector lock
loop approach to filter tuning is presented, along with some
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Fig. 3. Block diagram of the oscillator.

experimental results. Section IV discusses the applications of
the presented analysis to switching mode resonant inverters.
Section V contains the conclusions of this work.

II. OSCILLATOR TRANSIENT AND STEADY STATE

The system we analyze is shown in Fig. 3. For simplicity,
until further notice we assume that the comparator output
levels are 0 and 1. The filter is of the second-order bandpass
type. Its transfer function is

(1)

In the technique to be proposed below, we will employ the
step response of the filter, , which is

£ £ (2)

or

(3)

where is the unit step function. The step response crosses
zero whenever

(4)

or at times

(5)

where

(6)

The mechanism of oscillation buildup will be described with
the aid of Fig. 4. Let us assume that the system is initially
relaxed, and that oscillation is triggered by a small positive
noise at the comparator input at time . This will
cause a step input to the bandpass filter. The output of

Fig. 4. Oscillation buildup mechanism.

the bandpass filter for will coincide with the filter
step response , as shown in Fig. 4. This waveform crosses
zero at , so at that instant the comparator switches
again. Between this switching instant and the next one, the
comparator output can be represented by the superposition of
two steps— the first at and the second at :

(7)

Thus, for the same interval, the output of the linear filter can
be obtained using superposition as

(8)

Notice that the zero crossings of are apart from
each other, just as was the case with . Also, the time at
which starts coincides with the zero crossingof

. Thus, the output will reach its
next zero crossing whenboth and cross zero,
i.e., at . At this point, the comparator switches again,
and so until the next zero crossing, its input will be

(9)

and its output will be

(10)

Reasoning as above, we conclude that the next zero-crossing
will occur at , and so on. It now becomes obvious
that the output of the comparator can be represented for all
positive time by

(11)
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Fig. 5. Timing detail.

The filter output then is

(12)

where denotes the integer part of . It is apparent
from Fig. 4 that the terms in the sum that produces are
positive for if is even, and negative
if is odd. By writing

(13)
we see that the terms in the sum are all positive for

, and negative for ,
where is an integer. This is shown in Fig. 5.

A. Steady-State Response

The steady-state response can be obtained by using (3) in
(12) and allowing to increase. The result of this process, as
shown in the Appendix, is

(14)

where

(15)

(16)

(17)

Fig. 6. Circuit schematic.

(a)

(b)

Fig. 7. Filter and comparator outputs: (a) measured and (b) computed.
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Fig. 8. Measured (�) and predicted (—) amplitude of oscillation versusQ.

and is any integer. The peak of the oscillatory waveform
is obtained by finding the maximum of in the
time interval , and is an exercise in calculus. We
will find this peak for the special case when the filter quality
factor is high, using (14) and (17):

(18)

Thus,

(19)

Note that, all along, we have assumed the difference in
the clipping levels of the comparator to be unity. In the
more general case, the output will be directly proportional
to the difference in clipping levels of the comparator. This
proportionality will show itself as a multiplicative constant in
(17). If the levels of the comparator are and ( ),
then the analysis just presented can still be applied. But now,
the step response has to be calculated with nonzero initial
conditions. After going through the analysis, it can be shown
that the results (14)–(16) still hold, and that the multiplicative
constant that must be inserted in (17) is . This comes
as no surprise, because the bandpass filter rejects the dc
component of its input which is nonzero if is not
zero.

B. Startup Transient

We now consider the nature of startup dynamics assuming
an initially relaxed network. For this analysis, we will focus
on the peak of the oscillator output within each half-period.
The sequence of peaks can be considered to be a discrete

Fig. 9. Measured (�) and predicted (—) frequency of oscillation versusQ.

Fig. 10. Measured (�) and predicted (—) THD versusQ.

time sequence, and successive peaks can be shown to occur
at a time intervals of seconds. We will denote by the
peak of the absolute value of the output in the time interval

. From Fig. 4, (3), (12), and (13), it is
evident that we can write

(20)

Since

(21)
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Fig. 11. A conventional vector lock loop (VLL).

we obtain

(22)

where

(23)

Note that and the steady-state amplitude, obtained
by setting in (22), is . The time taken
for the output to reach 90% of its steady-state amplitude
is . This is obtained by putting

in (22), solving for , and calculating the
required time as . As expected, as
(equivalent to saying that ), the time taken to reach
steady state tends to .

C. Harmonic Distortion Analysis

Based on the detailed analysis of the oscillator steady-state
presented, the steady state response of the filter–comparator
system can be obtained by considering an open-loop system
in which the filter is driven by a periodic square wave, of
frequency . Expressing this square wave as a Fourier
series, and calculating the attenuation offered to each Fourier
component by the filter, it is straightforward [8] to calculate
the spectrum at the output of the filter, and from this the total
harmonic distortion (THD). This result can serve as a useful
bound for THD when the comparator (amplifier) has finite
gain. In that case, we assume that the frequency changes only
very little from that predicted by the above analysis. So for
the THD estimate, we say that the system is equivalent to a
filter driven by an imperfect square wave with finite rise time,
and thus with attenuated harmonics in comparison to a perfect
square wave. It is thus reasonable to assume that THD in that
case is bounded from above by that in the comparator case.
This has been verified by simulations.

D. Experimental Results

We now present experimental results obtained with a bread-
boarded prototype of the filter–comparator system. The circuit

(a)

(b)

Fig. 12. (a) � and (b) M surfaces for a conventional VLL (frequency
normalized to reference).

diagram of the system is shown in Fig. 6. The filter sec-
tion is a second-order op-amp RC filter, with pole frequen-
cies in the low kilohertz range. The comparator used was
LM311(National Semiconductor). As the quality factor was
changed by varying the damping resistor of the biquad, the
amplitude and frequency of oscillation changed in extremely
good agreement with theoretical predictions.
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(a)

(b)

Fig. 13. Comparison of conventional and proposed technique.

In Fig. 7, we show the predicted and observed waveforms
of the comparator and the filter when is one.

The measured and predicted amplitude of the output is
shown in Fig. 8. Note that as the quality factor increases, the
amplitude increases as predicted by (17). The frequency and
total harmonic distortion (THD) as a function of filter quality
factor are shown in Figs. 9 and 10, respectively. Notice that as
the filter gets more selective, the harmonics of the output are
attenuated to a greater degree, resulting in a lesser THD. From
the figures, it is clear that experimental results agree very well
with predictions.

III. A PPLICATIONS TO FILTER TUNING

A long-standing problem in filter design has been to tune
a filter to a desired response in the face of variations in
temperature and other environmental factors, tolerances, and
aging. Since tuning (even manual) of a high-order filter is
complex, integrated tuning schemes have generally relied on
manipulating the response of basic filter building blocks like
biquadratic sections. For a tutorial review of filter tuning, the
reader is referred to [9].

The tuning strategy can be indirect [10] or direct [11]. In
either case, the filter to be tuned is a voltage (or current)
controlled filter, that is, a filter whose parameters are “pro-
grammable” by a set of control voltages (or currents). For a
second-order section, the parameters of greatest interest are the
pole frequency and the pole quality factor. Hence these two
parameters need to be tuned. Implementation of both frequency
and loops is imperative in any high-frequency and/or high-
filter design.

The general block diagram of a vector lock loop (VLL)
based on a voltage controlled filter (VCF) is shown in Fig. 11
[12], [13]. This scheme is chosen in order to appropriately

introduce our proposed scheme in the sequel. The transfer
function of the filter is

(24)

The variable of interest in the frequency control loop is, the
phase difference between the reference and the output, while
in the -lock loop, it is , the magnitude of the output at
the pole frequency

(25)

(26)

The above equations show the coupled nature of the phase
and magnitude measurements. To make the coupling effects
even more explicit, the phase and magnitude detector output
surfaces are drawn in Fig. 12.

We will now point out the problem with interloop coupling
in a conventional VLL which uses a second-order filter. For
this argument, the reader is referred to Fig. 13.

Fig. 13(a) shows the situation with the conventional vector
locked loop. Assume that, to begin with, the relative shape
of the response is very close to the ideal, while the center
frequency deviates significantly from the desired value. For
purposes of argument, assume that frequency andtuning
is done sequentially. The magnitude detector will have an
output which is very low, and this would cause the-loop
to increase the filter , although there is only a frequency
error in the system. Now, however, when the frequency loop
converges to the desired value, the quality factor will be in
error, and the magnitude loop now needs more time to get
back to the right value. Notice that if the desired quality factor
is large, then even a small error in pole frequency could result
in the magnitude detector sensing a very low output. Thus the
problems with locking tend to get compounded with increasing
filter selectivity. In traditional schemes, these problems are
taken care of by making the -loop much slower than the
frequency loop, so as to make the loops quasi-independent.
Note that, ideally, we would want

(27)

(28)

From Fig. 13(a), it is obvious that all the problems with the
conventional design could be avoided if we were somehow
able to “move” the reference around, so that we can always
sense the peak gain of the filter, no matter at what frequency
it occurs. This situation is illustrated in Fig. 13(b). Now, the
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Fig. 14. Proposed VLL.

magnitude detector output is constant regardless of filter center
frequency, and a function of quality factor only. To generate a
“reference frequency” which is always equal to the filter pole
frequency, one can excite the filter and pass its output through
a limiter to obtain a constant amplitude. This is precisely what
the system of Fig. 3 does. From (17), it is apparent that the
amplitude of oscillation is now a single-valued function of
filter quality factor only, and is completely independent of
pole frequency.

The entire vector lock loop is shown in Fig. 14. The
pole frequency of the filter is set by locking the oscillation
frequency to the reference using a phase-lock loop. The quality
factor is set by measuring output magnitude. From (15), we
see that the oscillator frequency is an extremely weak function
of . As a numerical example, the difference between the
oscillation frequency when changes from 5 to 20 (a change
in of 300%) is just 2%. Thus, we can conclude that
the oscillation frequency is essentially independent offor
reasonably high values of . The frequency and amplitude
of oscillation as a function of normalized pole frequency and
quality factor are shown in Fig. 15. The independence of mag-
nitude and frequency measurements is apparent from these two
surface plots. We now discuss how the scheme just presented
is different from classical VCO methods discussed in the
literature. The classical methods also use the PLL principle and
amplitude stabilization, but they focus on single integrators, as
opposed to the biquadriatic section in the proposed scheme.
The VCO’s implemented in the traditional schemes limit
amplitude of oscillation using nonlinear methods, but assume
that the frequency of oscillation remains that of the resonator,
which is incorrect. Although the oscillation frequency will be
close to the frequency of the resonator, it will nevertheless be
dependent on the nature of the nonlinearity of the amplitude
stabilizing element [4], [6]. In indirect tuning methods, this
makes tight tracking between master and slave difficult. Our
scheme operates the filter within its limits of linearity, and
can be used around a resonator with anygreater than 0.5.
An alternate solution to keep the filter operating in a linear
mode is to use an AGC circuit instead of the comparator

(a)

(b)

Fig. 15. (a) Frequency and (b) amplitude surfaces for proposed VLL (fre-
quency normalized to desired pole frequency).

in Fig. 3. Tuning of infinite Q filters by this method has
been proposed in [14]–[16]. Note that even in this case, the
amplitude and frequency loops are independent [14]. This is



554 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 45, NO. 5, MAY 1998

more complicated to implement than the comparator method,
and does not offer us the convenience of a square wave output
(which is readily available in the comparator case). We now
summarize the advantages of the VLL just presented.

1) The pole frequency can be tuned with absolutely no error
in spite of offsets in the frequency control loop because
the system utilizes the PLL principle, in which phase
errors do not result frequency errors.

2) The reference can be a square wave, unlike in the
VCF case, which demands a reference signal with low
harmonic content.

3) The filter operates in a linear fashion, and the oscillation
frequency of the entire system tracks the pole frequency
of the filter with variations in ambient conditions and
other environmental factors.

4) The amplitude and frequency loops are independent.
5) This can be used in direct tuning schemes, because

the filter to be used can be tuned directly in contrast
to conventional VCO schemes which tune individual
integrators.

Thus, this loop is a marriage of the VCF and the PLL
schemes, combining the advantages of both in the same
method, and getting rid of the disadvantages of either methods.
The loop has the same circuit complexity as any other VLL
scheme.

A. Experimental Results

A low-frequency version of the proposed (VLL) was bread-
boarded. The master–slave system was realized by using MOS
transistor arrays. The filter topology was a second-order filter
of the Tow–Thomas kind, with tunable pole frequency and
quality factor. The comparator used was an LM311 (National
Semiconductor Corp.). The pole frequency and quality factor
of the filter were observed to adjust to the reference frequency
and the dc voltage reference to the magnitude locked loop.
Setting these quantities, filter tuning could be accomplished
for reference frequencies of 1.4–2.7 kHz, andvalues from
1–6. No special steps were adopted for stabilizing the loops,
and we encountered no problems with stability of either loop.
The limited capture and lock ranges of the PLL were due to the
fact that no attempt was made to optimize the design, which
was done just to check functionality of the VLL. Fig. 16 shows
the functionality of the frequency and loops.

IV. A PPLICATIONS TO SWITCHED

MODE RESONANT OSCILLATORS

Switched mode resonant oscillators form a useful class
of systems, finding application in dc to ac conversion. The
schematic of a switching mode resonant dc-to-ac inverter is
shown in Fig. 17. If the voltage across the series LCR network
is written as , note that the current can be written as

(29)

The polarity of the voltage source switched across the circuit
is dependent on the zero crossings of the current. Notice that
the current is a bandpass-filtered version of the voltage, and

(a)

(b)

Fig. 16. Functionality testing of the proposed VLL: (a) varying center
frequency by varying frequency reference and (b) varying quality factor by
varying voltage reference.

Fig. 17. A switching mode resonant dc-to-ac converter.

hence the system is exactly equivalent to the system shown
in Fig. 2. Hence, the analysis we have presented holds in its
entirety. In this case

(30)

(31)
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The behavior of this system has been investigated by
numerical simulation in [17] and [18]. The conclusion reached
in the references is the same—the minimumrequired for
oscillation is 1/2. The references cited above also investigate
the behavior of this oscillator at the edge of oscillation, that
is, at a of around the above critical value.

V. CONCLUSIONS

In this paper, we have presented an analytical technique for
the solution of a class of sinusoidal oscillators. A vector lock
loop, based on this class, has been proposed. The individual
loops of this VLL are uncoupled. This scheme combines the
best of both the VCF and VCO schemes. We also discussed
the applications of our solution to resonant switched mode
inverters.

APPENDIX

For this analysis, the reader is referred to Fig. 5. We use
from (13), and denote by the even integer .

Then, from (12), we get

(32)

Using a change of variables, and keeping in mind thatis
even, for , (29) can be written as follows:

(33)

In order to avoid unwieldy expressions, and in preparation for
the development that follows, we use the notation

(34)

Equation (3) for becomes, using (6) and (31),

(35)

Using (32) in (30), and noting that
, we get

(36)

or, using (6),

(37)

To calculate the steady-state response, we allowto increase.
In the limit, replacing the sum by an infinite sum, and using

(38)

the right hand side of (34) becomes

(39)

It is obvious from Fig. 4 that for , the steady-
state response shape is the same as in the interval ,
except for a sign inversion. Thus, (14)–(17) in Section II hold,
where is as in (13).

ACKNOWLEDGMENT

The authors sincerely thank K. Nagendra for the bread-
board implementation of the VLL. They also wish to thank
the anonymous reviewers for their suggestions.

REFERENCES

[1] T. E. Stern,Theory of Nonlinear Networks and Systems.Reading, MA:
Addison-Wesley, 1965.

[2] A. Gelb and V. Velde,Multiple-Input Describing Functions and Nonlin-
ear System Design.New York: McGraw-Hill, 1968.

[3] Y. Z. Tsypkin, Relay Automatic Systems.Moscow, Russia: Nauka,
1974.

[4] J. M. Khoury, “Design of a 15 MHz CMOS continuous-time filter with
on-chip tuning,”IEEE J. Solid State Circuits,vol. SC-26, pp. 1988–1997,
Dec. 1991.

[5] D. R. Welland, S. M. Phillip, K. Y. Leung, G. T. Tuttle, S. T. Dupuie, D.
R. Holberg, R. V. Jack, N. S. Sooch, K. D. Anderson, A. J. Armstrong,
R. T. Behrens, W. G. Bliss, T. O. Dudley, W. R. Foland, N. Glover,
and L. King, “A digital read–write channel with EEPR4 detection,” in
IEEE Int. Solid State Circuits Conf. Dig., 1994, pp. 276–277.

[6] R. F. Adams and D. O. Pederson, “Non-linear contribution to oscillation-
frequency sensitivity inRC integrated oscillators,”IEEE J. Solid State
Circuits, vol. SC-6, pp. 406–412, Dec. 1971.

[7] M. Murata, M. Ohta, K. Suzuki, and T. Namekawa, “Analysis of an
oscillator consisting of digital circuits,”IEEE J. Solid State Circuits,
vol. SC-5, pp. 165–168, Aug. 1970.

[8] K. Clarke and D. Hess,Communication Circuits: Analysis and Design.
Reading, MA: Addison-Wesley, 1971.

[9] R. Schaumann and M. A. Tan, “The problem of on-chip automatic tuning
in continuous time integrated filters,” inIEEE Proc. ISCAS,1989, pp.
106–109.

[10] K. R. Rao, V. Sethuraman, and P. K. Neelakantan, “Novel follow-the-
master filter,”Proc. IEEE,vol. 63, pp. 1725–1726, Dec. 1977.

[11] Y. Tsividis, “Self-tuned filters,”Electron. Lett.,vol. 17, no. 12, pp.
406–407, June 1981.

[12] D. Senderowicz, D. A. Hodges, and P. R. Gray, “An NMOS inte-
grated vector-locked loop,” inProc. IEEE Int. Symp. CAS,1982, pp.
1164–1167.

[13] V. Gopinathan, Y. Tsividis, K.-S. Tan, and R. K. Hester, “Design consid-
erations for high-frequency continuous-time filters and implementation
of an anti-aliasing filter for digital video,”IEEE J. Solid State Circuits,
vol. SC-25, pp. 1368–1378, Dec. 1990.

[14] J. O. Voorman, “On balanced gyrator filters,” inIntegrated Continuous
Time Filters—Design and Applications.New York: IEEE Press, 1991,
p. 83.

[15] V. Gopinathan, “High frequency transconductance—Capacitance
continuous-time filters,” Ph.D. dissertation, Columbia Univ., New York,
NY, 1990.

[16] J. M. Khoury, “Notes on continuous time filters,” Mead Electronics,
1995.



556 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 45, NO. 5, MAY 1998

[17] B. Z. Kaplan and R. Rabinovici, “Autonomous switching mode resonant
inverter as a limit cycle oscillator in disguise,”Int. J. Syst. Sci.,vol. 24,
no. 11, pp. 2199–2203, 1993.

[18] B. Z. Kaplan and D. Guetta, “Switching mode limit-cycle resonant
oscillator as a relaxation oscillator,”J. Franklin Inst., vol. 333B, no.
6, pp. 833–847, 1996.

Shanthi Pavan (M’98) was born in Narasaraopet,
India, in 1973. He received the B.Tech. degree in
electronics and communications engineering from
the Indian Institute of Technology, Madras, in 1995,
and the M.S. degree in electrical engineering from
Columbia University, New York, in 1997.

He is now with the Circuit Techniques Labora-
tory, Texas Instruments, Edison, NJ. His research
interests are continuous time filters and high-speed
circuits for hard disk drive systems.

Yannis P. Tsividis (S’71–M’74–SM’81–F’86) re-
ceived the B.S. degree from the University of Min-
nesota, Minneapolis, and the M.S. and Ph.D. degrees
from the University of California, Berkeley.

He is with the Department of Electrical Engineer-
ing, Columbia University, New York, as a Professor
and Director of the Microelectronic Circuits and
Systems Laboratory. He has worked for Motorola
Semiconductor and AT&T Bell Laboratories, and
has taught at the University of California, Berke-
ley, MIT, and the National Technical University of

Athens.
Dr. Tsividis is the recipient of the 1984 IEEE Baker Best Paper Award

and the 1986 European Solid-State Circuits Conference Best Paper Award.
He is co-recipient of the 1987 IEEE Circuits and Systems Society Darlington
Best Paper Award. He has received the Great Teacher Award at Columbia
University.


